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Dea Garcia-Hermoso5,6, Stéphane Bretagne5,6, Michel Miegeville1,2 and Patrice Le Pape1,2*
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Objectives: Triazole resistance in Aspergillus fumigatus due to a single azole resistance mechanism (TR/L98H) is
increasingly reported in European countries. Data from patients with cystic fibrosis (CF) are limited. Our study
aimed to investigate the prevalence and molecular mechanisms of azole resistance in A. fumigatus in a cohort
of patients with CF.

Methods: Eighty-five A. fumigatus isolates from 50 CF patients, collected between January 2010 and April 2011,
were retrospectively analysed for azole resistance using agar plates containing 4 mg/L itraconazole. MICs of
itraconazole, voriconazole and posaconazole were determined according to EUCAST methodology for each
isolate able to grow on this medium. Species identification was performed by sequencing of the b-tubulin
gene. Sequencing analysis of the cyp51A gene and its promoter region was conducted.

Results: Nine isolates (four patients, 8% prevalence) were able to grow on itraconazole-containing agar plates.
Itraconazole resistance was confirmed by EUCAST methodology (MICs .2 mg/L). All isolates had mutations in
the cyp51A gene at residues previously involved in azole resistance: L98H (n¼5), M220T (n¼4) and G54R
(n¼1). One patient had three genetically distinct azole-resistant isolates identified during the study. The iso-
lates with L98H that were recovered from three patients (6% prevalence) also had the 34 bp tandem repeat
in the promoter region of cyp51A (TR/L98H) and displayed multiazole resistance.

Conclusions: We report an 8% prevalence of itraconazole resistance in CF patients in our centre, mostly driven
by TR/L98H (6%). Our data confirm that TR/L98H occurs in France and can be highly prevalent in CF patients.
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Introduction
Aspergillus fumigatus is widespread in the environment and is
the main Aspergillus species responsible for human diseases
in both immunocompromised and immunocompetent hosts.
Inherently resistant to fluconazole, A. fumigatus is usually
susceptible to the other triazole antifungal drugs, such as itra-
conazole, voriconazole or posaconazole, and voriconazole is
the first-line therapy for invasive aspergillosis. Since the first
two published cases in 1997,1 an ever-growing number of
studies focusing on acquired azole resistance in both clinical

and environmental A. fumigatus isolates suggest that azole re-
sistance is increasing.2,3 Azole resistance mainly results from
substitutions in lanosterol 14a-demethylase (encoded by the
cyp51A gene).4 In the Netherlands, the main mechanism
involves a 34 bp tandem repeat in the promoter region of the
cyp51A gene along with a leucine to histidine substitution at
residue 98 (also referred to as TR/L98H), which confers multia-
zole resistance.3 The main hypothesis explaining why TR/L98H
is found in .90% of A. fumigatus azole-resistant isolates from
the Netherlands relies on the widespread use of azole com-
pounds in agriculture.5,6 Outside the Netherlands, isolates with
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TR/L98H have been reported in most European countries,
including Belgium, Denmark, the UK and Spain, and recently
outside Europe, e.g. in India, suggesting a global spread of this
resistance mechanism.2,5,7 – 9 Although TR/L98H has also been
recently reported in France, there are limited data regarding its
prevalence in this country.10,11 Here, we present the results of
a 16 month retrospective study to determine the frequency
and molecular mechanisms of azole resistance in a cohort of
patients with cystic fibrosis (CF).

Patients and methods
One hundred and forty-two sputum and bronchial aspiration samples
(mean number of samples per patient¼2.8; 1–18 samples per patient)
from 50 CF patients (mean age¼21 years; 5–46 years of age) admitted
to the Pneumology Department of Nantes University Hospital (France)
during January 2010 to April 2011 were analysed retrospectively.
Ninety-seven of the 142 (68.3%) samples were positive for A. fumigatus.
Twenty-six patients (52%) had several positive samples (two to six
samples). Eighty-five of the 97 isolates (12 unavailable for analysis)
were included in this study.

Azole resistance was screened by subculturing each isolate on agar
plates containing 4 mg/L itraconazole. Plates were prepared in-house
and contained RPMI 1640 medium (Sigma–Aldrich, Saint-Quentin
Fallavier, France) supplemented with 2% D-glucose (Sigma–Aldrich) buf-
fered with 3-(N-morpholino)propanesulphonic acid (MOPS; 0.165 M final
concentration, Sigma–Aldrich) at pH 7.0 and 1.5% Bacto agar (Difco,
Pont de Claix, France). Briefly, fresh conidia from a 7-day-old culture on
Sabouraud dextrose agar slants with chloramphenicol (bioMérieux,
Marcy l’Étoile, France) were suspended in sterile water at a turbidity
equivalent to that of a 0.5 McFarland standard. Plates were inoculated
by dipping a sterile swab into the inoculum suspension and swabbing
the entire agar surface. Plates were then incubated at 358C for 72 h.
Two Aspergillus ustus isolates were included as positive controls in each
set of experiments. Itraconazole resistance was evaluated by Etestw

(AB Biodisk, bioMérieux, France) for each isolate that was able to grow
on azole-containing agar plates. MICs of itraconazole, voriconazole and
posaconazole were therefore determined by the reference microdilution
method according to EUCAST (CNRMA, Institut Pasteur, Paris, France).12

Isolates with MICs .2 mg/L were considered resistant to itraconazole13

and voriconazole,4 and isolates with MICs .0.25 mg/L were considered
resistant to posaconazole.14

Species identification of itraconazole-resistant isolates was performed
by amplification and sequencing of the b-tubulin gene.15 Each of these
isolates was further subjected to the amplification and sequencing of
the cyp51A gene, as described previously,10 and of a 234 bp region of
its promoter using the primers AFTR-F (5′-TAATCGCAGCACCACTTCAG-3′)
and AFTR-R (5′-GCCTAGGACAAGGACGAATG-3′). Nucleotide sequences
were compared with the reference sequence of the A. fumigatus azole-
susceptible strain CM-237 (GenBank accession number AF338659). Geno-
typing of the itraconazole-resistant isolates was performed using four
microsatellite markers with a global discriminatory power of 0.994, as
described previously.16 Briefly, amplification was carried out in a 20 mL re-
action mixture containing 1.5 mM MgCl2, 50 mM KCl, 10 mM Tris-HCl (pH
8.3), 0.1 mM each dNTP, 0.1 mM each primer (Sigma, Paris, France) and
1 U of Amplitaq Gold Taq DNA polymerase (Applied Biosystems, Meylan,
France). After an initial denaturation step at 948C for 5 min, samples
were amplified by 30 cycles of denaturation at 948C for 30 s, annealing
at 598C for 30 s and elongation at 728C for 30 s, and then a final exten-
sion at 728C for 30 min. Next, 2 mL of the PCR product was mixed with
13 mL of HiDi Formamide (Applied Biosystems) containing 0.5 mL of 6-
carboxy-X-rhodamine-labelled Geneflo 625 size standard (Eurx, Gdansk,
Poland). Capillary electrophoresis was performed using the ABI Prism

3730XL sequencer and allele sizes were calculated with GeneMapper
software (version 4; Applied Biosystems). Since the four microsatellite
markers consist of dinucleotide repeats, the alleles were considered to
be different when a 2 bp difference was observed.

Results and discussion
Nine of the 85 isolates (four patients, 8% global prevalence) were
able to grow on itraconazole-containing agar (Table 1). Sequen-
cing of the b-tubulin gene confirmed that these isolates were
A. fumigatus sensu stricto. Each isolate also had high MICs by
Etestw. Itraconazole resistance was confirmed using EUCAST
methodology, with all isolates having MICs .2 mg/L. Distinct
patterns of antifungal susceptibility were observed for voricon-
azole and posaconazole (Table 1). Importantly, five out of the
nine isolates, coming from three patients (Patients 1, 2 and 3,
Table 1), displayed multiazole resistance (resistance to itracon-
azole, voriconazole and posaconazole). Previous exposure to
mould-active azoles (mostly itraconazole) was recorded for
each of these patients.

To provide further insight into the mechanisms responsible for
azole resistance in these isolates, we amplified the cyp51A
coding sequence and its promoter. The nine itraconazole-
resistant isolates displayed mutations in the cyp51A gene at
residues previously linked to azole resistance: L98H (n¼5),
M220T (n¼4) and G54R (n¼1) (Table 1). All isolates with L98H
also displayed the 34 bp tandem repeat (TR/L98H) and were
recovered from three patients (6% global prevalence in CF). As
expected, isolates with TR/L98H displayed multiazole resistance.4

Patient 3 had three A. fumigatus isolates with distinct azole re-
sistance mechanisms on three separate samplings. Compared
with TR/L98H, M220T was associated with itraconazole resist-
ance, but lower MICs of voriconazole. Combination of M220T
with G54R was associated with resistance to posaconazole, but
voriconazole retained significant in vitro activity (MIC¼0.25 mg/L).

Overall, whereas the acquisition of TR/L98H in Patients 1, 2
and 3 can hardly be excluded from having arisen from long-term
azole therapy (as none of these patients was ‘azole naive’), the
main hypothesis is that these patients were contaminated by
A. fumigatus itraconazole-resistant isolates from their environ-
ment.5 This hypothesis is supported by microsatellite typing
data, as Patients 1, 2 and 3 displayed almost identical TR/L98H
genotypes (Table 1). In stark contrast, other isolates (including
itraconazole-susceptible isolates from these patients) had
completely different genotypes (Table 1).

One interesting finding is the description of Patient 1, who was
colonized for 11 months by a unique itraconazole-resistant
A. fumigatus isolate with TR/L98H upon genotyping. Such
chronic colonization by a multiazole-resistant isolate in the
course of CF, also reported in another study,8 must be considered
in antifungal management strategies after lung transplantation.
However, our study also illustrates that colonization of the
respiratory tract by A. fumigatus in the course of CF is a
complex and dynamic process, as illustrated here by: (i) the re-
covery of multiple azole-resistant isolates from a single patient
(Patient 3); and (ii) the recovery of itraconazole-susceptible
isolates before (Patient 4) or after the recovery of itraconazole-
resistant isolates (Patient 3).

In previous studies, the prevalence of itraconazole resistance
was ,1%, 4.5% and 4.6% in Portugal,17 Denmark8 and France,
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respectively.11 Here, we report a high prevalence of itraconazole
resistance in A. fumigatus isolated from CF patients at our centre
(4/50 patients, 8%). Importantly, TR/L98H was the main mechan-
ism responsible for azole resistance in our study (3/50 patients,
6%), confirming that TR/L98H is prevalent in France.5,11 Of note,
TR/L98H was not reported in the single study focusing on patients
with haematological malignancies in France,10 providing evidence
that the prevalence of TR/L98H and more generally azole resist-
ance varies from centre to centre and probably also according to
the underlying diseases.18 Indeed, azole resistance has been
especially described in CF and in patients with chronic pulmonary
aspergillosis or allergic bronchopulmonary aspergillosis, with a
prevalence rate as high as 75%.19 On the other hand, azole resist-
ance has been shown to be lower but highly variable in patients
with haematological malignancies, with prevalence rates
varying from 0.01% to 9.4%.10,18

As already shown, itraconazole-containing plates are easy to
use in a routine mycology laboratory, offering the possibility of
screening large collections of clinical strains at low cost.8

However, the use of a concentration of 4 mg/L itraconazole,
which has also been reported by others8,9,18 but is above the sus-
ceptibility breakpoint for A. fumigatus (≤1 mg/L),13 might be a
limitation of our study as some non-susceptible isolates could
have been missed.

In summary, the present study highlights a high prevalence
of itraconazole resistance in A. fumigatus, mostly driven by
TR/L98H, in CF patients at our centre. From a more global per-
spective, nationwide and multicentre surveys involving medical
centres responsible for the management of patients at high
risk of invasive aspergillosis, such as those with CF, are

urgently needed to evaluate the burden of azole resistance in
A. fumigatus.
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